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by
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1. Introduction

Classical thin airfoil theory breaks down near stagnation p.’nts and near
the edges of the airfoil, This is due to the assumption of the existence of
a small perturbation flow field that is not valid in the neighbourhood of
such points, For a survey of these difficulties and the methods that are
developed to relieve them we refer to M.van Dyke [1].

In 1949 M.J.Lighthill [2] introduced a method to give uniformly valid
approximate solutions of physical problems containing a small parameter
€. He demonstrated his method with a slightly non-linear first order or-
dinary differential equation and obtained a uniform approximation by taking
both the dependent and the independent variable as a function of a new
variable and then expanding both in a perturbation power series in €, The
method appeared to be very successful in the case of hyperbolic partial
differential equations, because the characteristic variables could be used
as Lighthill-variables in a natural way. (H.S.Tsien [3]).

An application of the method to equations of the elliptical type was given
by Lighthill [4] in 1951, He constructed a uniformly valid approximation
of the two-dimensional, incompressible thin airfoil problem by slightly
shifting the flow field parallel to the chord of the airfoil, thus moving the
troublesome singularity at the leading edge into the interior of the airfoil-
contour, It appeared impossible to give a uniformly valid solution to any
order of approximation in this way.

In this paper the thin airfoil problem is treated analogously, but the co-
ordinate straining is more systematic and general: instead of a mere
shifting of coordinates it concerns a function approximating uniformly a
mapping of the physical plane onto a plane in which the airfoil is represented
by its chord. It will appear in the following that uniformly valid approx-
imations to any order can be obtained for alrf01ls with elliptically blunt
and wedge-shaped sharp edges.

The main part of the paper is devoted to the incompressible case. In
section 7 the method is considered from a more general point of view in
order to extend the treatment to the compressible case,

2. Fovwulation of the problem
A two-dimensional incompressible nonviscous fluid flow in a x, y-plane
is completely determined by a complex velocity potential yx, which is an
_analytic function of the complex variable z=x+1iy:
1(z) = P(x, y) +1i¥(x, y). (2.1)
The complex velocity w(z)=u-iv can be found from
w(z) = '(2) =u(x, y) - 1v(x, y). (2.2)

The equations 2,1 and 2,2 can be derived from (and are equivalent with)
the equation of continuity
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and the condition of irrotationality of the flow:
Uy - vy =0.

We will consider blunt bodies with small thickness parameter €, of which
the boundary is given by:

yH(x) = ety (x) = (1 - x2)*F (),
N (2. 3)
y(x) = efy(x) =€(1 -x%)Fy (%), | x|=1,

with F; (x) and Fy (x) continuous, differentiable functions of x on the interval
|x|=1, satisfying the condition

Fi(x)=-Fy(x)#0 at x=%1,

So the thin airfoils under consideration have a finite, non-zero radius of
curvature at the ends x=2%1, (See fig, 1)
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The body is placed in a uniform flow with complex velocity-potential

xu(z)=Ue™ z, (2.4)
of which the angle of incidence ¥ is not necessarily small,
The disturbance created by the presence of the body has to be zero at
infinity, so for the total velocity potential x(z) must hold:

2(z)~xny(z) for x2+y?% w0 (2.5)

On the boundary of the body %'(z) and x(z) have to be finite, and because
of the tangency of the flow, we have on the body

Y=Im x=0.

3. The method of linearizing
To obtain a uniformly valid approximate solution of the problem stated
in section 2, we consider both the complex potential y and the complex

variable z as a function of a new complex variable n=a+if and expand
both in a perturbation power series in e€:

1) = %o (M +ex (M + e xa(m+..., (3.1)

z(n)=n+ezy(n)+ etz +... . (3.2)
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The functions %y, %1, Xgs-.» and z;, zg,... are analytic functions of the
complex variable n, Separation into real and imaginary parts of series 3.1
and ‘3,2 gives:

O(a, B) = Og(a, B) + ey (@, B) + 2 Dy(a, B) +. .. (3.3)
¥(a,B)=Yo(a,B) +e¥y(a,B) + €2 ¥y(a,B) +. .. (3.4)
x(@,B)=a+ex)(a,B)+e xy(a,B) +... (3.5)
(@, B) =B+ey (@ B+ ol B)+. .. (3.6)

Taking z as a function of a new complex variable n means that the z-plane
is mapped conformally on the n-plane, So the upper boundary of the air-
foil transforms into

B+ey (@,B)+...=efj{atex (a,B)+...} =
=efy (@) + €2xq(a,B)f (@) +€3(...)+... (3.7)

To the lowest order of approximation (€ =0) this expression corresponds
to B=+40, |a| =1, It is easily seen that to the lowest order of approxi-
mation the lower side of the body transforms into S=-o, |a| =1, that the
edges z=1%1 are mapped onto n==%1, and that the point at infinity remains
undisturbed.

We now make use of the freedom that we have created by introducing
the additional functions z;(n), z9(m),...

We determine the analytic functions zl(n), Z9{N),... in such a way that
- to all orders of approximation the body is mapped on the line B=ZXo,|a|=1
(with the edges z=ZIl1 corresponding to n=11), Furthermore we want the
points at 1nf1n1ty to correspond apart from an unknown real factor a(e)=
l+ajet+anke?+,

z(n)~a(e)n=n+ean+eagn+... for a2+[32—>oo (3.8)

Hence we want eq.3.7 to be equivalent with B=+o0,|a|=1. So the co-
efficients of equal powers of € must cancel on B=+o0,|a|=1:

y]_ (aa +O) = fl(a)a
¥y (e, +0) = x4 (o, +0) £} (a), (3.9)

Analogous results are obtained for y;(¢,-0) on f=-0,{a|=1, (i=1,2,3,...)
Condition 3.8 prescribes the behav1our of the analytlc functlons z;(n) at
infinity:

z.(n)~an for a?+B? > w i=1,2,3,...
1 1

At n=2%1 must hold: z;(n)=0(i=1,2,3,...), because of the mapping of the
body edges z=%1 on the points n=1%1,

After having determined the terms of the series expansion of z(n) we can
determine the terms of the series expansion of x(n). It is possible, how-
ever, to formulate one boundary value problem for x{n) at once:

Imy=0 on B=1o, |a|=
dm)~agfz(mi~Ue™ n(l+a,e+...) at infinity,
x(n) finite on B=to, || =1, (3.10)
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4. Determination of x(n) and z,(n)

We have the following boundary value problem for the sectionally holo-
morphic function zq(17):

B 7n-plane
z.1=0 ; 7 Z1=
______\_\ Imz,= f, (x) ;o
-1 Imz;?g(x) +1 o4
|
Fig.2.

B=+0, -15a=1 : Im zi=f;(e)=(1-a2)}iF) (o) ,
B=-0, -1%a=1 : Im z;=fy{a)=(1-a2)iF,(a) ,
Condition at infinity: z,(n)=0(n),
Additional Condition: z;(£1)=0, (4.1)
(See also Fig.2)
This problem is a special case of a slightly more general boundary value

problem treated in the appendix of this paper, According to expression A, 8
from this appendix, the solution of problem 4.1 is given by

1 9 .1 s {E1(t)+o (D)} dt
7,1 (n)=An+ B+ 53 (n°-1)2 4{ -
1 271 ) (1'1:2)2(1:—7’])

R TACENCITT

L (4.2)

-1 t-n
Because of the condition at infinity the homogeneous part of the solution

has been reduced to An+B, The real constants A and B can be determined
by means of the additional conditions:

+1
£q(t)-15 (1)
1f 1

zy(+1)= 5= dt+A+B=0,
o1 t-1
RO
z,(-1)= 5= ——— dt-A+B=0,
' 27 t+1
-1
yielding +l 1
L ¢ B0 Lt (0
= - o= f ——— dt and B=-3— f — dt. (4.3)
27 tz_l 27 . tz_l
-1 -

Substitution of 4.3 into 4.2 and rearranging gives:

+1 +1

e L ety f (E1(rfa(}dt o) f {£,(t)-fo()}dt
z1(n) = 57 (n°-1)% — + 5= (1-7 —_—
rH T 2w (1-tPyE(t-my 27 (1-t%) (t-n)

(4. 4)
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The behaviour of z;(n) at infinity is
z1(n) ~ am, with a;=A given by 4, 3. (4. 5)

We have now determined z3i(n) and xi(e,fo) can be computed from it in
order to formulate boundary condition 3.9 for the next perturbation term
z9(n). The resulting boundary value problem will not be solved here.

The solution of the homogeneous boundary value problem 3,10 for x{(n)
can be given by means of expression A.8 from the appendix:

(M =Dn+EHF Vn? -1,

The real constants D, E and F follow from the condition at infinity
() ~ Ue™ na(e) for a?+8% — w.
Thus we find

~(M)=(U n cos - iU sin v. \/n?-1) a(e), (2.6)

or

Z(M=1on)rex1(M)+€ 1o (N)+. .. =

=(U n cos - iU siny \/n? -1) (1+a;e+aqse’ +. . .). (4.7)

5. The uniform fivst ovder approximation

In general we are only interested in a first order approximation of the
problem, so we consider

&(m)=xoM)*+ex1(n)+R(M)
z(n)=n+ezy (M)+Z(n)

The remainder term Z{n)=X(a, 3)+iY(e, 8) is an analytic function of n in the
cut n-plane and is of a degree not higher than one at infinity., Further-
more Z(n) vanishes at n=t1. Hence the real and imaginary part of Z(n)
are bounded functions of @ on the upper and lower side of the line B=o, |a| =1,
and zero at the ends n=%t1.

So Z(n) can be expressed in a way similar to z,(n):

+1

. (YT+y T)at
200 3 (P -1)F |

L FYt-YT)dt
tem | — . (5.1)

(1-t)2(t-n) 4 (1-t%)(t-n)

Applying the mean value theorem to 3.7 and taking into account the
boundary values 4.1 of z;(n), we find on B=+o, |@|=1:

Y (@)=Y (e, +o)={e? %, (a, to)teX(a, +o)} ) {B(e)}, with |8(e)|<1. (5.2)
From 5.2 follows that Y+(a) is of order of magnitude € on |a|=1. The
same holds for Y~(a). Then from 5.1 can be deduced that both X(a, +0)
and X(a, -0) are of order of magnitude € on |a|=1. Then from 5.2 again
follows that Y+(a/) is of order of magnitude €2, in other words

| YHe)| <€®’Ky, |Y7(@)[<€’Ky, on la|=1,

(K, and K, real constants).
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Hence Z(n) is of order of magnitude €2 for finite n, and is 0(e%2n) at infinity.

The behaviour of Z(n) near the ends n=tl can be found as follows:

It is always possible to map the exterior of the contours of the bodies
given by 2.3 conformally on the exterior of the unit circle [{l=1 in a
{-plane by means of an analytic function z=%Z({). This function is unique
if we require correspondance of the points z=f1 with the points {=t1, and
if we require that Z(£)=0({) at infinity.

So we have Z(f)=tl at ¢=f1, (5.3)

and, because of the conformity
Z'(§)#0 at ¢=£1. (5.4)
By means of the transformation

ned(Srg)s (t=neVP-1)

the cut n-plane is mapped onto the exterior of the unit circle |§|=1 in the
§-plane,
So

~ 1

B(8)=2{n(E) =3(Erg)rez {n(E}+Z{n (D}
Because of 5.3 and 5.4 we have

ez {n()}+Z{n(§)}=0(¢>-1) at ¢=%1,
or

€21 (M)+Z(m)=00/n? -1) at n=%1.
Frum eg.4.4 can be deduced

zl(n)=0(\,'n2-1) at n=t1,
So

- zm=0nn2-1) or Zm)=o(n?-1) at n=*1.
Resuming, we can say that for alln both Z(n) and Z'(n) give a contribution
to z(n) and z'(n) respectively, that is of order e compared to that of €z;(n)
and ez} (n) respectively. Hence n+ez;(n) is a uniform asymptotic approxi-
mation of z(n).
The uniformity of the asymptotic approximation of x(n) by x.(n)rexi(n)

is clear from eq.4.7. The complex velocity w(n) is now approximated
uniformly by

2'(m 1o M)rexti(m)

w=u-iv=
z'(n) 1+ezj(n)

6. Examples. I) F; (x) and F, (%) polynomials in x.

If F, (x) and F, (x) are given polynomials in x, we can write

N
k
Fi(0Fp ()= I ax’s (6.1)
k=
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N-2
Fy (05 () =(1-x") B p,x", (6.2)

where N is the highest degree of x in F; (x) and F, (x).
The factor (1—x2) in 6.2 occurs because of the condition

F, (x)=-F, (x)#0 at x=11,
Substitution of 6.1 and 6.2 into z;(n) gives

21 (1) =50 -1 Fy (0)F5 (1)} = 5 (Fy ()+F5 ()} (02 -1 1n 123

+im*-1PRY (+1-1%) R, (), (6. 3)

with R%Zl (n) and R&fil (n) polynomials of degree N-1 in n with real co-~
efficients.

This solution of problem 4.1 for z;(n) can be verified directly:

The terms containing F; -Fy and F;+F,; have imaginary parts

L{F, (@)-F, (@)} (1-a2)? and 3{F, (a)+F, (@)} (1-a?)?

respectively, on the upper side of the cut, and have imaginary parts

pap=

-1 {F (@)-Fy (@)} (1-a?)! and 1{F; (a)+F, (@)} (1-®)

respectively, on the lower side of the cut. So it is seen that the sum of
these two terms is a particular solution of problem 4.1,

The last two terms of eq. 6.3 are homogeneous solutions of problem 4,1
in which the real coefficients of R(lzl (n) and R(N221 (n) are determined in
such a way, that the degree of zlfln) at infinity is not higher than one,

II, Symmetric bodies,

Fig. 3.

When the airfoil is symmetric with respect to the x-axis (see fig.3), we
have

By (x)+F (x)=0 and Fq (x)=-Fy (x)=F(x).
Taking

k

N
Fix)= T Ax,
k=0
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eq. 8. 3 reduces to

21 (M)=F (n) (1%-1)% + (1-1%) R 1 ().
So we have the first order approximation

x(m = [Un cos y- i U (n%-1)% sin v](1+a;€)

L (6.4)
z(n) = n+e [F(n) (1*-1)*+(1-0%) Ry ()]
The complex velocity w=u-iv is then given by
[U cos vy- iUn(n? —1)'% sin y](1+a€)
w(n) = . (6.5)

1+e[nm? -1)EF(n)+F' () (n?-1)} +(1-n2)RYy_; (n) -2nRy.q ()]
The velocities at the ends n=%f1 are

-iU sin y(1+a;€)

eF(f1)
The stagnation points are given by ,'(n)=0, or
n=cos v on 3=+0, and n=-cos y on 3=-0.

When the airfoil is an ellipse, we have F(x)=1, and in order to satisfy the
condition at infinity:

z1(n) =0(n) for a?+B% =,

the polynomial Ry.; (1) must vanish identically. Thus we obtain the solution
for the elliptic cylinder:

«(m)=[Un cos y- iUM?-1)* sin 7](1+e),z
z(n)=mre(n?-1)%,

which is, in fact, the exact solution. (C.Jacob [5]).

III. Sharp edges and other body shapes,

In our theory the singular behaviour of x'(n) at n=11 does not depend on
the body shape:

L
2

+'(M=0fsiny . (n*-1)*} at n=t1,

The nature of the singularities of z(n), however, is strongly influenced by
the shape of the leading and trailing edge of the body. In the case of elliptic
ends the singularities of z'(n) are the same as that of x'(n), except for
v=0, thus yielding finite velocities on the airfoil.

In the case of other blunt symmetrical end-shapes, for instance

y(x)=0{(1+x)*} at x=-1, 0<x<l,

we still can compute z; (1) from eq.4.4. According to Mushkelishvili [6],
the behaviour of z;(n) at n=~1 is then

z,(n)=0 {(n+1)"}.
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This means that for 0 <X <3 the velocity at the leading edge vanishes at
any angle of incidence, and for 3 <X <1 always is infinite (except for y=0).
This of course is physically intolerable.

The reason of this failure is that in these cases the expression n+ez;(n),
as obtained from eq.4.4, is not a uniformly valid approximation of the
conformal mapping z=z(n) of the airfoil on the cut 8=o0, |@{=1 in the n-plane,
Indeed, the singularity of zg(n) becomes O{(n+1)2>"1} at n=-1, which makes
correspondancy of z=-1 to n=-1 impossible for 0 <A<, For $<A<1, the
singularity in z3(n) would cause the same difficulty.

If the airfoil has a symmetrical wedge-shaped edge, i.e,

y(x)=£0O(1-x) at x=1,

the results can be shown to be asymptotically correct,
In the case of a simple, symmetrical lenticular airfoil given by

y(x)=£ €(1-x?) for |xI|=1,

eq.4.4 yields

n-1

a(n)=mezg(m=n+2 (1-n%) In 75 (6. 6)

It is easy to show by comparison to the exact singularity

1‘1% arctg 2e )§ at n=1

2(m)=0{(n-1)

that eq.6.6 is a uniformly valid approximation of z(n), In the same way
we can show that {z'(m)}-!, which we need for the computation of the
velocities, is asymptotically correct. Of course we get infinite velocities
at the sharp edges if the angle of incidence is unequal to zero,

Thus it is possible to give a uniformly valid approximation of the flow
along an airfoil with blunt leading edge and wedge-shaped trailing edge.
Let the airfoil be given by

yH(x)=e(1-x)V1+x Fy (%),

y ()= (I-x)VItx Fy(x) , [x[=1,
with Fj;(x) and Fy(x) continuous, differentiable functions of x satisfying

F; (£1)=-Fy (£ 1)#0.
The singular behaviour of z,(n) becomes

1
zl(n)=O{(n+1)2} at  n=-1,
z1(M)=0{(n-1) In (n-1)} at n=1 ,
ylelding infinite velocities at the sharp trailing edge. We now can apply

the well-known Kutta-condition in order to obtain finite velocities at the
trailing edge by adding a circulation of strength T to x(n):

x(M)={Un cos v -iU siny (n*-1)} (1+aye) + 2 In {n+(n2-1)}},

I' is determined by requiring that n=1 be a stagnation point, or
the same, by requiring x'(n) to be finite at n=1:

, what is

'=27U sin v. (1+aj€),
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The complete uniformly valid first order solution is then

x(={Un cos v - iU siny [(n2-1) -nf{n+n-1)H]] (1+a;0),

L=t [F, (1)+F(1)] dt L E (1)-F, (1] dt
i(n-l)ij( )2 [Fy (1) +Fg(1)] e(_nz)j 1 (O -Fy (t)]

27i +o (1
(1+t)z (t-n)

z(n)=n+

2

27
1 t-n

_ L F[F()-Fy(h]at
with al=2—ﬂj .
-1

(1+t)%

7. An altevnative approach to the problem

The uniformity of the approximation is based on the use of a new complex
variable n=o+if on which depend both x=Q+i¥ and z=x+iy. Formulating the
problem in terms of the real variables ¢ and B, we have the basic equations

O=¥y and Qy=-Y, (7. 1)
of which we want to give a solution of the form:
Q)—_-Q)(OI,B), ‘f=‘f(01,3), X=X(01,B), y=Y(a:B)-

We are free to choose either a set of two first order partial differential
equations for x(e,B) and y(a,B) or a set of two first order equations for
®(a,B) and Y(a,B), because, having chosen a set of equations for x(e,f)
and y(a, B), then from 7.1 follows a set of equations for Q(e,B) and ¥(a,B),
and reversely, having chosen a set of equations for ®(e,8) and ¥(a,B),
then also from 7.1 follows a set of equations for x(e,f8) and y(a,B).

We have taken z as an analytic function of 1, which is equivalent to
choosing the equations

X, =g 3 X%V, (7.2)

for x(e,B) and y(e,B).
Then from 7,1 follow the equations

®,=¥y and §g=-T,, (7. 3)

which is equivalent to x=Q+i¥ being an analytic function of 7.

The equations 7.2 and 7. 3 can be obtained by a different way of reasoning:

When the angle of incidence ¥ is equal to zero, the line Y=o of the
d,¥-plane corresponds to the line B=o of the @,B8-plane, in which we want
the thin body to be represented by B=o,|al|Z1.

Moreover, we want the points of infinity of the «,f- and the x, y-plane
to correspond as follows:

X ~ a(€)a
y ~ b(e)3  for a?+ B2, (a and b real).

From the x,y-plane we know
d~Ux, ¥~Uy for x*+y°-w

So
® ~ Ua(e)e, ¥ ~ Ub(e)B, for a?+B% .
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Because of this resemblance of the @,Y-plane and the «,B-plane, it is
reasaonable to choose

Q(a, B)=Uea(e),
Y(a,B)=UBb(e), for all ¢ and B. (7.4)

Then the equations that must be satisfied by x(e,) and y(a,B) follow from
7.1

é(e)yﬁ =b(€)x, and a(€)xg=-b(€)y, . (7.5)

If we can determine x(o,B8) and y(o,B8) in such a way, that a(e)=b(e) then
we obtain equations 7.2 for x(e,B) and y(a,B).

Egs.7.2 imply that z=x+iy is an analytic function of n=o+i, so if we
require:

z(n) ~ C(em  for a?+B% - o, C(€) real,

then indeed the condition a(€)=b(e) is satisfied,

The equations 7.2 are independent of the angle of incidence vy and also
the boundary values of it only depend on the geometry of the body. Thus
in the case y#0, when we can not choose Q(a,B) and ¥(a,B) according to
7.4, we take egs.7.2 to be satisfied by x(e,8) and y(a,B). Then from 7.1
follows the set of equations 7.3, that have to be satisfied by ®(e,B) and
Y(e,B).

This way of reasoning in order to obtain a set of equations for the four
unknown functions x(a,B8), y(@,B), ®(@,B) and ¥(a,B) is entirely independent
of the idea of conformal mapping, and can be useful in the case of more
general elliptic systems of basic equations,

It is possible, however, that difficulties arise. For instance, when the
basic equations have the non-linear form

Q,=A(D,, Dy, ¥y, Y)Y,
(I)y:B((DxJ(I)y’Yx’Yy)Yx’ (7.6)

substitution of eqs. 7.4 in the case of y=0 yields, in general, a set of linear

equations for xj3(e,8) and yi(e,B), and non-linear equations for the higher

order terms of x(e,B) and y(e,B). This is no disadvantage because it is

still possible to give a first order approximative solution in the case <y=o.
But if we want to extend the method to y#o, we have to put:

O(a,B)=Q,(a,B)+ed; (@.B)*+. ..

Y(e,B)=Y, (@, B)+Y; (@,B)+. .. (7.7)
Substitution of eqs.7.7 into 7.6 and using the linear equations obtained
for x;(x,8) and y;(2,B), produces non-linear equations even for (, and
Y., that are mostly unsolvable. This is the reason why in the case of

compressible, subsonic flow the treatment will be restricted to y=o. (See
next section).

8. Two-dimensional subsonic compressible flow at zevo angle of incidence
A two-dimensional compressible flow is governed by the equations

B Py
Yy vy - p(x,y) ~ %

(8.1)
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(p density; p, undisturbed density at infinity).
We consider ideal fluids obeying the pressure-density relation of Poisson

p P K Cp
() o

o
(p pressure; P, undisturbed density at infinity; k specific heat ratio of the

fluid)
Introducing the velocity of sound (a) by
2. dp
a"= 35

[¢] : 9
we can express r as a function of a“:

9 L
Io} a, k-1
-pg- = <————> (a,: velocity of sound at infinity)

aZ

With the aid of Bernoulli's law

2
a 2,4

%(u2+v2) t— =3
k-1 k-1

we find two basic equations for our problem:
k-1 o xo A2 T{E
D= {1+— (U2-QZ-OH} Y (8.3)

2a,

¥

k-1 L
- 2_Am2_A2\)1k
§,=- {1+ — (U-02-OD ) ¥,
2a,

We consider the same class of thin bodies as in the incompressible case,
placed in & uniform compressible flow with velocity U and angle of incidence
v=0.

According to the approach pointed out in section 7, we put

Q(a, B)=Uaa(e)=Ua(l+ajet+age® +...)
(8.4)

Y(a, B)=UBb(€)=UB(1+bye+bge +, . .)
where a(e) and b(e) depend on the behaviour of x(e, f) and y(e, 8) at infinity

X(Q’,B) ~ Q/a(€) 1]
y(a, B) ~ Bb(e) for o+ B% s m.
Substitution of egs.8.4 and of

x(a, B)=atex; (a,B)+. ..

y(@,B)=B+ey, (a,B)+. ..
info eqs. 8.3 and neglecting terms of higher order than €2, yields
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0y, ox

1
- (1-M%) — =b;-(1-MD)a,
9 da
oy, 9x
e to, (8. 5)
do 88

where M =U/a, is the Mach-number of the flow at infinity. We will con-
sider subsonic flows, i.e. M, <1.
If it is possible to determine x1(a@,B) and y;(a,B) such that

by ~(1-MZ)a; =0 (8. 6)
then we have after putting m2=1—M§:

01 RS 9% 0¥y
—+ —=0 (8.7)
2 oa 8 da

These two equations are the Cauchy-Riemann equations for the function
xﬁ% y1, that is analytic in the complex variable a+imfB. Requiring:

xl+r_1n.y1 ~ Cla+imp) for a?+f% o (C real),

then indeed condition 8.6 is satisfied.

It is easy to see now, that a compressible thin body flow at zero angle
of attack can be derived from the corresponding incompressible flow by
means of the following rule:

Let the first-order approximation of an incompressible flow of zero angle
of incidence be given by

«£(M)=Un(1+a€), (n=a+ip)
z{n)=n+ez,(n),

with
z(n) ~ (1+a;e)n  for o+ B%>w,

then the first-order approximation of the corresponding compressible sub-
sonic flow is given by

U
(D(aB+— (a,B)= a/+ir-%)+E i

(@ +ifm)
B

X (Q.B)+im y(@,B)=ati= + = 2, (@+ifm)

This rule can be considered as the analogy of the well-known Prandtl-
Glauert rule from the classical subsonic airfoil theory,
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APPENDIX: The solution of a cevtain boundary value " problem
We are looking for a sectionally holomorphic function W(z), being of
finite degree at infinity, satisfying the following houndary conditions on the
cut y=o, |[x|=1 of the complex z-plane:
y=+o, | x|=1l: Im W(z)=f;(x) (A. 1)
y=-0, |x|=1: Im W(z)=fy(x)
Additional condition: y=o, ix|=1: W finite,
The real functions £;(x) and f3(x) have the form
£,(x)=(1-%)" (1) "1 B, (%),
(with a;> 0, b;> 0, F;(x) continuous, F;(x1)70; i=1,2).

This boundary value problem is a modification of a problem treated by
N.I. Muskhelishvili [6].

We put:  2(z)=3{W(z)+W(Z)}, and
(2)=3 {W(2)-W(Z)}, '

from which follows:
Qz)=2(7), and (A.2)
X (z)=-x(Z) (A. 3)
On the real axis we have now:

Q(x+io)+Q(x-io)=
=QT+Q =2 Re Q7 = Re(W +W")
Q' -Q =2ilm Q =iIm(W'-W")
T =2iIm 1T = Im(WHW )
« -1 =2Re x* =Re (W'-W")

The boundary value problem A, 1 can be separated into two Hilbert problems:

y=0, -o<xX<-1 Q" -q7=0
1S xE+1 . QF-Q7=i[f) (%) -1 y(x)]
flex<w : QT-Q7=0 (A. 4)
and
y=0, ~w<x<-1 H-x"=0
1= x=41 ;0 Ty [ (x)+E5(x)] (A.5)
+l < X< x+-x’=0

A particular solution of problem A.4 is

+1
=g [ [L0-50) & (a.6)
4]
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The general solution of an inhomogeneous boundary value problem is found
by adding a particular solution of it to the general solution of the homo-
geneous problem. So the solution of problem A.4, satisfying A.,2, being
finite at z=£1, and being of finite degree at infinity is:

f [£1(t)-f5(1)] ——+R (z) (A7)

where R;(z) is a polynomial of finite degree in z, with real coefficients.
A particular solution of problem A.5 is constructed from a particular
solution i of the corresponding homogeneous problem by means of

1.
) o il (g (0] at
e [ =
4 (t-2)
We take g ( )=i(z —1)5, choosing that branch of (22-1)% for which holds
% 2, .2

(z -1)*~z  for x"+y°—w
The general solution of the homogeneous problem corresponding to A.5 is

x5 (2)=iRy (2) (27 -1}F

where Rg(z) is a polynomial of finite degree in z with real coefficients.
The general solution of problem A,5 is then:

LI (t)+Ey (1) ] dt
1,90 .1 a(

4 = o —— _lZ

HA gy (200 f (1-t2)% (t-2)

-1
This solution is of finite degree at infinity, is finite for z=*1 and satisfies

A. 3.
The solution W(z) of the original boundary value problem A.1l is given by

+iRy(z) (2% -1)%.

W(z)=Q(z)+x(2)=Rq (z)+iRy(2) (% -1)% +
& [f (W m]dt | # [ (Y)-fy(h)]dt

bt (22-1)E e
2wl 2, % 2
(L-t°)E(t-z) 7 t-z
-1 -1
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